53 research outputs found

    Late Cenozoic Paleoceanography of the Central Arctic Ocean

    Get PDF
    The Arctic Ocean is the smallest and perhaps least accessible of the worlds oceans. It occupies only 26% of the global ocean area, and less than 10% of its volume [1]. However, it exerts a disproportionately large influence on the global climate system through a complex set of positive and negative feedback mechanisms directly or indirectly related to terrestrial ice and snow cover and sea ice. Increasingly, the northern high latitude cryosphere is seen as an exceptionally fragile part of the global climate system, a fact exemplified by observed reductions in sea ice extent during the past decades [2]. The paleoceanographic evolution of the Arctic Ocean can provide important insights into the physical forcing mechanisms that affect the form, intensity and permanence of ice in the high Arctic, and its sensitivity to these mechanisms in vastly different climate states of the past. However, marine records capturing the late Cenozoic paleoceanography of the Arctic are limited – most notably because only a single deep borehole exists from the central parts of this Ocean. This paper reviews the principal late Cenozoic (Neogene/Quaternary) results from the Arctic Coring Expedition to the Lomonosov Ridge and in light of recent data and observations on modern sea ice, outlines emerging questions related to three main themes: 1) the establishment of the 'modern' Arctic Ocean and the opening of the Fram Strait 2) the inception of perennial sea ice 3) The Quaternary intensification of Northern Hemisphere glaciations

    Arctic in Rapid Transition (ART) : science plan

    Get PDF
    The Arctic is undergoing rapid transformations that have brought the Arctic Ocean to the top of international political agendas. Predicting future conditions of the Arctic Ocean system requires scientific knowledge of its present status as well as a process-based understanding of the mechanisms of change. The Arctic in Rapid Transition (ART) initiative is an integrative, international, interdisciplinary pan-Arctic program to study changes and feedbacks among the physical and biogeochemical components of the Arctic Ocean and their ultimate impacts on biological productivity. The goal of ART is to develop priorities for Arctic marine science over the next decade. Three overarching questions form the basis of the ART science plan: (1) How were past transitions in sea ice connected to energy flows, elemental cycling, biological diversity and productivity, and how do these compare to present and projected shifts? (2) How will biogeochemical cycling respond to transitions in terrestrial, gateway and shelf-to-basin fluxes? (3) How do Arctic Ocean organisms and ecosystems respond to environmental transitions including temperature, stratification, ice conditions, and pH? The integrated approach developed to answer the ART key scientific questions comprises: (a) process studies and observations to reveal mechanisms, (b) the establishment of links to existing monitoring programs, (c) the evaluation of geological records to extend time-series, and (d) the improvement of our modeling capabilities of climate-induced transitions. In order to develop an implementation plan for the ART initiative, an international and interdisciplinary workshop is currently planned to take place in Winnipeg, Canada in October 2010

    Late Quaternary glacial/interglacial variability in Arctic sea ice and related organic carbon flux: A 180 ka record from Yermak Plateau

    Get PDF
    The recent dramatic decline of Arctic sea over the last decades and its controlling processes are still poorly understood. In order to distinguish between natural and anthropogenic processes controlling these changes in sea ice, we have to look back to the past beyond the times of direct measurements. For this purpose, we carried out a multi-proxy approach combining organic-geochemical data (bulk parameters: C/N, TOC, δ13Corg; biomarkers: IP25, sterols, GDGTs) with sedimentological data (core lithology, physical properties, IRD counting, XRF scanning) determined in sediments of Yermak Plateau Core PS92/039-2. This core is situated close to the modern summer ice edge and thus very sensitive for environmental changes. Based on magnetostratigraphy and correlations with dated sediment cores, this core represents the time span from MIS 6 to 1 (ca. 180,000 years) and allows the reconstruction of sea ice variability and related changes in oceanic circulation patterns and the Svalbard Barents Ice Sheet (SBIS) fluctuations during glacial/interglacial changes. As sea ice and phytoplankton biomarkers occur throughout the entire sedimentary section but show some strong variability, a more seasonal sea ice cover was probably predominant during the entire time interval, superimposed by a distinct short-term variability in extent. Significant fluctuations in most of our proxy records indicate highly variable sea ice conditions over the Yermak Plateau during MIS 6. Based on our biomarker data, the SBIS could not have reached the Yermak Plateau during MIS 6. During MIS 4 and 2, coevally elevated concentrations of the sea ice proxy IP25 and the biomarkers for phytoplankton productivity and terrigenous input point to a stationary ice margin above the core position at that time. Strengthened Atlantic Water inflow possibly coupled with katabatic winds from the protruding SBIS may have created this stable ice edge situation and the related sedimentary regime

    Arctic Ocean benthic foraminifera Mg/Ca ratios and global Mg/Ca-temperature calibrations: New constraints at low temperatures

    Get PDF
    We explore the use of Mg/Ca ratios in six Arctic Ocean benthic foraminifera species as bottom water palaeothermometers and expand published Mg/Ca-temperature calibrations to the coldest bottom temperatures (<1 °C). Foraminifera were analyzed in surface sediments at 27 sites in the Chukchi Sea, East Siberian Sea, Laptev Sea, Lomonosov Ridge and Petermann Fjord. The sites span water depths of 52–1157 m and bottom water temperatures (BWT) of −1.8 to +0.9 °C. Benthic foraminifera were alive at time of collection, determined from Rose Bengal (RB) staining. Three infaunal and three epifaunal species were abundant enough for Mg/Ca analysis. As predicted by theory and empirical evidence, cold water Arctic Ocean benthic species produce low Mg/Ca ratios, the exception being the porcelaneous species Quinqueloculina arctica. Our new data provide important constraints at the cold end (<1 °C) when added to existing global datasets. The refined calibrations based on the new and published global data appear best supported for the infaunal species Nonionella labradorica (Mg/Ca = 1.325 ± 0.01 × e^(0.065 ± 0.01 × BWT), r2 = 0.9), Cassidulina neoteretis (Mg/Ca = 1.009 ± 0.02 × e^(0.042 ± 0.01 × BWT), r2 = 0.6) and Elphidium clavatum (Mg/Ca = 0.816 ± 0.06 + 0.125 ± 0.05 × BWT, r2 = 0.4). The latter is based on the new Arctic data only. This suggests that Arctic Ocean infaunal taxa are suitable for capturing at least relative and probably semi-quantitative past changes in BWT. Arctic Oridorsalis tener Mg/Ca data are combined with existing O. umbonatus Mg/Ca data from well saturated core-tops from other regions to produce a temperature calibration with minimal influence of bottom water carbonate saturation state (Mg/Ca = 1.317 ± 0.03 × e^(0.102 ± 0.01 BWT), r2 = 0.7). The same approach for Cibicidoides wuellerstorfi yields Mg/Ca = 1.043 ± 0.03 × e^(0.118 ± 0.1 BWT), r2 = 0.4. Mg/Ca ratios of the porcelaneous epifaunal species Q. arctica show a clear positive relationship between Mg/Ca and Δ[CO32−] indicating that this species is not suitable for Mg/Ca-palaeothermometry at low temperatures, but may be useful in reconstructing carbonate system parameters through time

    Late Quaternary sea-ice history of northern Fram Strait/Arctic Ocean

    Get PDF
    One of the main characteristics of the Arctic Ocean is its seasonal to perennial sea-ice cover. Variations of sea-ice conditions affect the Earth’s albedo, primary production, rate of deep-water etc.. During the last decades, a drastic decrease in sea ice has been recorded, and the causes of which, i.e. natural vs. anthropogenic forcings, and their relevance within the global climate system, are subject of intense scientific and societal debate. In this context, records of past sea-ice conditions going beyond instrumental records are of major significance. These records may help to better understand the processes controlling natural sea-ice variability and to improve models for forecasts of future climatic conditions. During RV Polarstern Cruise PS92 in summer 2015, a 860 cm long sediment core (PS92/039-2) was re- covered from the eastern flank of Yermak Plateau north of the Svalbard archipelago (Peeken, 2015). Based on a preliminary age model, this sediment core probably represents the time interval from MIS 6 to MIS 1. This core, located close to the modern summer ice edge, has been selected for reconstruction of past Arctic sea-ice variability based on specific biomarkers. In this context, we have determined the ice-algae-derived sea-ice proxy IP25 (Belt et al., 2007), in combination with other biomarkers indicative for open-water conditions (cf., Müller et al., 2009, 2011). Furthermore, organic carbon fluxes were differentiated using specific biomarkers indicative for marine primary production (brassicasterol, dinosterol) and terrigenous input (campesterol, β-sitosterol). In this poster, preliminary results of our organic-geochemical and sedimentological investigations are presented. Distinct fluctuations of these biomarkers indicate several major, partly abrupt changes in sea-ice cover in the Yermak Plateau area during the late Quaternary. These changes are probably linked to changes in the inflow of Atlantic Water along the western coastline of Svalbard into the Arctic Ocean. Furthermore, the repetitive advance and retreat of the Svalbard Barents Sea Ice Sheet might have influenced the terrigenous input and the environmental setting north of Svalbard, as reflected in the sediment composition of Core PS92/039-2

    The Arctic in Rapid Transition (ART) Initiative: integrating priorities for Arctic marine science over the next decade

    Get PDF
    The Arctic is currently undergoing rapid environmental and economic transformations. Recent and ongoing climate warming which is simplifying access to oil and gas resources, enabling trans-Arctic shipping and shifting the distribution of harvestable resources, has brought the Arctic Ocean to the top of national and international political agendas. Scientific knowledge of the present status of the Arctic Ocean and the process-based understanding needed to make predictions throughout the arctic region are thus urgently required. A step towards improving our capacity to predict future arctic change was undertaken with the Second International Conference on Arctic Research Planning (ICARP II) meetings in 2005 and 2006 which brought together scientists, policymakers, research managers, arctic residents and other stakeholders interested in the future of arctic climate change research. The Arctic in Rapid Transition (ART) Initiative developed out of an effort to synthesize the several resulting ICARP II science plans specific to the marine environment and has been a process driven by the early career scientists of the ICARP II Marine Roundtable. To this end, the ART Initiative is an integrative, international, multi-disciplinary, long-term pan-Arctic program to study changes and feedbacks among the physical characteristics and biogeochemical cycles of the Arctic Ocean and its' resulting capacity for biological productivity. The first ART workshop was held in Fairbanks, Alaska in November 2009 with 58 participants, the results of which will help to develop a science and implementation plan that integrates, updates and develops priorities for arctic marine science over the next decade. Our focus within the ART Initiative will be to bridge gaps in knowledge not only across disciplinary boundaries (e.g., geology, biology, physical oceanography, geochemistry and meteorology), but also across geographic boundaries (e.g., shelves, margins and the central Arctic Ocean) and temporal boundaries (e.g., paleo/geologic records, current process observations and future modeling studies). This interdisciplinary, international and integrated temporal approach of the ART Initiative will provide a means to better understand and predict change and ultimate responses in the Arctic Ocean system. More information about the ART Initiative can be found at www.aosb.org/art.html

    Potential links between Baltic Sea submarine terraces and groundwater seeping

    Get PDF
    Submarine groundwater discharge (SGD) influences ocean chemistry, circulation, and the spreading of nutrients and pollutants; it also shapes sea floor morphology. In the Baltic Sea, SGD was linked to the development of terraces and semicircular depressions mapped in an area of the southern Stockholm archipelago, Sweden, in the 1990s. We mapped additional parts of the Stockholm archipelago, areas in Blekinge, southern Sweden, and southern Finland using high-resolution multibeam sonars and sub-bottom profilers to investigate if the sea floor morphological features discovered in the 1990s are widespread and to further address the hypothesis linking their formation to SGD. Sediment coring and sea floor photography conducted with a remotely operated vehicle (ROV) and divers add additional information to the geophysical mapping results. We find that terraces, with general bathymetric expressions of about 1 m and lateral extents of sometimes > 100 m, are widespread in the surveyed areas of the Baltic Sea and are consistently formed in glacial clay. Semicircular depressions, however, are only found in a limited part of a surveyed area east of the island of Asko, southern Stockholm archipelago. While submarine terraces can be produced by several processes, we interpret our results to be in support of the basic hypothesis of terrace formation initially proposed in the 1990s; i.e. groundwater flows through siltier, more permeable layers in glacial clay to discharge at the sea floor, leading to the formation of a sharp terrace when the clay layers above seepage zones are undermined enough to collapse. By linking the terraces to a specific geologic setting, our study further refines the formation hypothesis and thereby forms the foundation for a future assessment of SGD in the Baltic Sea that may use marine geological mapping as a starting point. We propose that SGD through the submarine sea floor terraces is plausible and could be intermittent and linked to periods of higher groundwater levels, implying that to quantify the contribution of freshwater to the Baltic Sea through this potential mechanism, more complex hydrogeological studies are required.Peer reviewe

    Late Quaternary sedimentary processes in the central Arctic Ocean inferred from geophysical mapping

    Get PDF
    Cryospheric events in the Arctic Ocean have been largely studied through the imprints of ice sheets, ice shelves and icebergs in the seafloor morphology and sediment stratigraphy. Subglacial morphologies have been identified in the shallowest regions of the Arctic Ocean, up to 1200 m water depth, revealing the extent and dynamics of Arctic ice sheets during the last glacial periods. However, less attention has been given to sedimentary features imaged in the vicinity of the ice-grounded areas. Detailed interpretation of the sparse available swath bathymetry and sub-bottom profiles from the Lomonosov Ridge and the Amundsen Basin shows the occurrence of mass transport deposits (MTDs) and sediment waves in the central Arctic Ocean. The waxing and waning ice sheets and shelves in the Arctic Ocean have influenced the distribution of MTDs in the vicinity of grounding-ice areas, i.e. along the crest of Lomonosov Ridge. Due to the potential of Arctic sediments to hold gas hydrates, their destabilization should not be ruled out as trigger for sediment instability. Sediment waves formed by the interaction of internal waves that propagate along water mass interfaces with the bathymetric barrier of Lomonosov Ridge. This work describes the distribution and formation mechanisms of MTDs and sediment waves in the central Arctic Ocean in relation to grounding ice and internal waves between water masses respectively. The distribution of these features provides new insight into past cryospheric and oceanographic conditions of the central Arctic Ocean

    Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation

    Get PDF
    The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland–Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica
    • …
    corecore